XLIV Simposium Nacional de Alumbrado

El pasado miércoles 23 de Mayo, candelTEC asistió al XLIV Simposium Nacional de Alumbrado en Guadalajara con la ponencia Últimos avances en la evaluación de la reproducción cromática: índice de rendimiento cromático (Ra) e índice de fidelidad cromática (Rf) presentada por nuestra compañera Elena Sanjuán.

El objeto de esta ponencia es hacer una revisión de la normativa, publicaciones e investigaciones relacionadas con la visión del color utilizando fuentes de tecnología LED, dónde se ha llegado y qué falta por definir o establecer.

Con el desarrollo de la tecnología y la mejora de los productos LED, ha resultado necesario plantear nuevas métricas para estimar con mayor precisión la percepción cromática.

A lo largo de la ponencia se analizaron los diferentes documentos que tratan la evaluación del rendimiento cromático: CIE13.3:1995, IES TM-30:2015 y CIE 224:2017, se explicó la diferencia entre el cálculo de Ra (uso de 8 muestras de color, observador 2º y comparación con una fuente de referencia) y el Rf (uso de 99 muestras de color y observador 10º y comparación con una fuente de referencia), haciendo especial hincapié en que el método de medida es el mismo, lo que cambia es la forma de analizar los datos. Por supuesto, se trata de diferentes descripciones de las fuentes, no hay influencia alguna en el proceso de la percepción individual del color.

Además, se mostraron los resultados partiendo de diferentes distribuciones espectrales de luminarias LED que dan lugar a distintas temperaturas de color.

Por último, se presentaron los resultados de las investigaciones realizadas por el NIST sobre las preferencias de los usuarios en el color de la luz, analizando diferentes Duv.

Como conclusión, tras las últimas investigaciones y esfuerzos realizados por mejorar la manera en la que se determina la capacidad que tiene una fuente de reproducir los colores, se ha conseguido mejorar el proceso de comparación, pasar de analizar 8 muestras de color a analizar 99. Pero todavía nos queda un paso más y es determinar qué valores de Ra y Rf son adecuados para cada producto y cada aplicación.

Para más información, descargue el PDF de la presentación aquí:

XLIV Simposium nacional de alumbrado

candelTEC les ofrece servicio acreditado ENAC de ensayos fotométricos en luminarias según UNE-EN 13032-4:2016. Les invitamos a ver nuestra web y redes sociales www.candeltec.es

Anuncios

Tolerancias en la definición de la colorimetría de fuentes LED

A partir de la distribución espectral de una fuente luminosa obtenemos sus coordenadas cromáticas, temperatura de color e índice de rendimiento de color, siendo los dos últimos parámetros válidos para fuentes de luz blanca.

Es habitual definir la cromaticidad de una fuente de luz con su temperatura de color, pero este dato por sí solo no informa inequívocamente del color de la fuente. Con una misma temperatura de color, encontramos productos que presentan un aspecto cromático diferente: en un producto de 3000K, podemos ver una luz amarillenta o rosada.

Además de la temperatura de color correlacionada (Tc), que corresponde a una isolinea que cruza la del cuerpo negro en la “zona de los blancos” de la lengua de color, necesitamos la distancia (Duv) desde la línea del cuerpo negro a las coordenadas de color de nuestra fuente (Fig.1).

figura 1

Fig.1. Duv en el diagrama CIE1960 (u, v) [1]

Con estos dos datos tendremos la misma información sobre la cromaticidad de la fuente que con sus coordenadas colorimétricas. Pero falta algo más, especialmente para el fabricante o integrador, información sobre las tolerancias de estos valores para evitar diferencias de color entre productos. ¿Cuáles deben ser estas tolerancias?

Por un lado, tenemos la indicada en normas, directivas, pliegos de condiciones, por ejemplo, Tc = 3000 K ± 200 K. Esto simplemente nos indica qué rango de temperaturas de color son aceptables para una determinada instalación, no quiere decir que una diferencia de 300 K no sea apreciable visualmente.

Por otro lado, tenemos la tolerancia que el fabricante quiera asumir en sus productos. En algunas aplicaciones es un asunto clave, por la necesidad de apreciación de las diferencias de color bajo esa iluminación o el cambio de aspecto del propio LED en función del ángulo de emisión, aquí aparece el concepto de “uniformidad angular del color”.

Finalmente hay que hablar de las diferencias perceptibles de color, que habitualmente se relacionan con los pasos en las elipses de MacAdam, definidas en 1942 utilizando un iluminante C (6800 K) actualmente en desuso. Este método no es adecuado para la tecnología actual [2], y como alternativa, la CIE propone el uso de los circulos u’v’.

El diagrama de cromaticidad CIE (u’, v’) es el espacio de color más uniforme para fuentes de luz. En este diagrama podemos representar las elipses MacAdam de cinco pasos y centrados en estas elipses trazamos círculos de radio 0.0055, que prácticamente se superponen, es decir, los círculos pueden reemplazar las elipses de MacAdam en esta “región blanca”, alrededor de la línea del cuerpo negro en el diagrama (u’, v’). (Fig.2)

figura 2

Fig.2. Elipses MacAdam de cinco pasos (negro) y círculos de radio 0.0055 (rojo) en el diagrama (u’,v’). Los pasos se miden desde el centro del círculo, por lo que entre extremos de cualquier diámetro habrá 10 pasos. [2]

Por coherencia con las elipses de MacAdam, el término “n-pasos en círculo u’v’” se define como un círculo en este diagrama con un radio de n veces 0,0011. En esta región del diagrama (u’. v’) se considera que una diferencia de color perceptible con una probabilidad del 50%, equivale a 0,0013 (0,0011 × 1,18).

La CIE recomienda especificar las tolerancias de cromaticidad para fuentes de luz para iluminación general mediante círculos u’v’, en lugar de elipses MacAdam. En el caso de LEDs, alternativamente, se pueden usar cuadrángulos.

Igualmente se recomienda esta especificación para la uniformidad angular de la cromaticidad (cambios de color al variar el ángulo de observación) y el mantenimiento de la cromaticidad a largo plazo. Se desaconseja el uso de la desviación estándar de coincidencia de colores (SDCM) o la mínima diferencia perceptible (JND) como medida de diferencia de cromaticidad [3].

figura 3

Fig. 3. Cuadrantes para 4 pasos en el diagrama CIE1931 [4]

 

Con respecto al efecto de la variación angular del color, cabe destacar la importancia de disponer de información sobre la variabilidad de este parámetro para el LED seleccionado.

imagen 1

Fig.4. Iluminación producida por una luminaria de 4018 K (valor global), con variación angular de temperatura de color entre 4400 K y 3700 K. Foto: candelTEC.

En definitiva, en la selección de LEDs debemos plantearnos las necesidades reales que tendrán el producto y la instalación, por lo que es importante identificar el círculo u’v’ en el que se encuentra y considerar:

  • Valor global integrado: definirá la zona en la que se encontrará nuestro producto.
  • Uniformidad angular del color, definida como la mayor desviación de cromaticidad entre cada dirección de emisión y el valor de cromaticidad global integrado.
  • Mantenimiento del color a largo plazo.

Además de estos tres parámetros, también se debe valorar el índice de rendimiento del color (IRC o Ra), aunque este parámetro merece un artículo aparte. Recientes investigaciones han dado lugar a revisiones de este parámetro, definiendo el índice general de fidelidad del color [5], que nos permite realizar una mejor evaluación de la calidad de la iluminación para apreciar colores, y se continúa trabajando en otras medidas de calidad de color relacionadas con la percepción.

 

[1] Color Quality Metrics – Recent Progress and Future Perspective (Y. Ohno – NIST)

[2] IEC 60081 1997

[3] CIE TN 001:2014

[4] ANSI/NEMA C78.377-2017

[5] TM30-15, CIE224:2017

 

candelTEC les ofrece el servicio de ensayos fotométricos y colorimétricos ENAC en luminarias viales, luminarias de exterior y luminarias de interior. Evaluación de seguridad fotobiológica en luminarias, lámparas y otros dispositivos luminosos. Les invitamos a ver nuestra web y redes sociales www.candeltec.es

CandelTEC, laboratorio acreditado por ENAC

CandelTEC, desde el pasado 21 Julio 2017, ha comenzado a formar parte de la red de laboratorios acreditados ENAC (código asignado de acreditación 1265/LE2410). Desde aquí, queremos agradecer especialmente a todos nuestros clientes su apoyo y paciencia a lo largo del proceso.

 

candeltec ENAC

La importancia de acreditarnos

ENAC (Entidad Nacional de Acreditación) es el organismo designado por la Administración para establecer y mantener el sistema de acreditación a nivel nacional, de acuerdo a normas internacionales, siguiendo las políticas y recomendaciones de la UE. La acreditación es la herramienta establecida para generar confianza en la correcta ejecución de un tipo determinado de actividades.

Concretamente, la norma de referencia para la acreditación de un laboratorio de ensayo es la UNE-EN ISO/IEC 17025.  Exigiendo así que el laboratorio disponga de un sistema de gestión de la calidad, dotando al laboratorio de capacidad para proporcionar un servicio adecuado a sus clientes.

Para un laboratorio acreditado es necesario tener un control estricto de los equipos de medida, un uso y mantenimiento adecuado. Debemos someterlos a un plan de calibración que nos proporcione información fiable sobre sus incertidumbres y nos garantice la trazabilidad de las mediciones.

Recurrir a un laboratorio acreditado proporciona a las empresas la confianza y seguridad de disponer de medios y métodos técnicos altamente competentes, para obtener así fiabilidad en sus resultados.

Algunas de las ventajas de contratar laboratorios acreditados por ENAC

Reconocimiento internacional de los resultados

A través de un sistema de acuerdos internacionales, los resultados emitidos por un laboratorio bajo la acreditación de ENAC tienen reconocimiento en más de 90 países de todo el mundo. Este reconocimiento permite que los resultados sean más fácilmente aceptados en mercados exteriores, ayuda a reducir costes y elimina la necesidad de volver a realizar pruebas en otro país.

Evaluación continua del laboratorio

Los laboratorios son re-evaluados periódicamente lo que obliga al laboratorio a estar constantemente adecuando sus procesos para cumplir con los requisitos y con el fin de obtener los resultados más fiables. Estas auditorías las realizan auditores técnicos especializados que verifican que el laboratorio ha actuado de manera sistemática cumpliendo los requisitos de acreditación.

Defensa ante posibles errores

Los laboratorios acreditados deben disponer de un sistema de tratamiento de reclamaciones. ENAC por su parte también puede actuar si el cliente del laboratorio no queda satisfecho con la respuesta de éste (este servicio y los términos legales aplicables están disponibles en su página web)

A continuación, presentamos nuestro alcance de acreditación:

Norma de Referencia/ Reference standard: UNE-EN ISO/IEC 17025:2005

Titulo del Alcance de Acreditación/ Title (3): FOTOMETRÍA Y CROMATICIDAD FUENTES LUMINOSAS / PHOTOMETRY AND CHROMATICITY OF LUMINOUS SOURCES

Categoría/Category (4): 0

Área Técnica (5): ENSAYOS DE CARACTERÍSTICAS FOTOMÉTRICAS, CROMÁTICAS Y DE SEGURIDAD ÓPTICA EN PRODUCTOS PARA ILUMINACIÓN

14.png

candelTEC les ofrece el servicio de ensayos fotométricos y colorimétricos ENAC en luminarias viales, luminarias de exterior y luminarias de interior. Evaluación de seguridad fotobiológica en luminarias, lámparas y otros dispositivos luminosos. Les invitamos a ver nuestra web y redes sociales www.candeltec.es

Ficheros LDT de productos tipo villa y sus proyectos en Dialux

Cuando hacemos el proyecto de iluminación de un producto, es muy importante asegurarnos no solo que el fichero fotométrico que tenemos se ha creado correctamente, sino conocer cómo se ha parametrizado la luminaria en dicho fichero. En concreto, nos referimos en este caso a las dimensiones de la luminaria, ya que como veremos a continuación, la altura de la luminaria definida en el LDT nos determinará la posición del centro fotométrico en Dialux.

1

Las luminarias tipo villa que incorporan módulos y no llevan laterales luminosos, tienen su área emisora y por tanto su centro fotométrico, en una zona intermedia dentro de la luminaria. Es habitual que el módulo quede embutido en la zona superior de la luminaria.

2

Los ficheros LDT, NO permiten indicar exactamente dónde se sitúa el centro fotométrico, por lo que los programas para realizar proyectos de iluminación (en concreto Dialux), sitúan el centro fotométrico en la parte más baja de la luminaria.

¿Cómo hay que actuar con este tipo de luminarias?

Caso 1.- Si en el fichero fotométrico, al parámetro “altura de la luminaria” le asignamos la dimensión superior de la villa (0.245 m), el centro fotométrico quedará bien situado en Dialux.

3

La altura de montaje en Dialux, queda definida como la distancia de la parte más alta de la luminaria al suelo, por lo que en Dialux debemos indicar: la altura del báculo (en este caso 4 m) + la altura de la luminaria (4 m + 0.675 m = 4.675 m). El programa en función de los datos del LDT, situará el punto de luz donde corresponde: a 4 metros de báculo + 0.43 m desde la base de la luminaria al centro fotométrico.

4

Resultados fotométricos en el proyecto de iluminación:

5

Caso 2.- Si en el fichero fotométrico, al parámetro “altura de la luminaria” le asignamos la dimensión completa de la villa (0.675 m), Dialux situará el centro fotométrico del producto en la parte más baja de la luminaria (mal situado):

6

¿Cómo podemos solucionarlo? Si queremos que calcule bien, debemos subir la luminaria en Dialux:

Como hemos comentado, la altura de montaje en Dialux, queda definida como la distancia de la parte más alta de la luminaria al suelo, por lo que en Dialux debemos indicar: los 4 metros de báculo + toda la altura de la luminaria (0.675 m) + la altura a la que se sitúa el centro fotométrico (0.43 m), obteniendo 4 m + 0.675 m + 0.43 m = 5.105 m.

Así, el programa situará el punto de luz donde corresponde, siguiendo lo indicado en los datos del LDT: 4 m de báculo + 0.43 m desde la base de la luminaria al centro fotométrico. Los cálculos serán correctos aunque el aspecto que ofrece es extraño, ya que sube la luminaria completa y en la vista 3D no parece realmente corresponder al producto que analizamos.

7

Resultados fotométricos en el proyecto de iluminación:

8

Como podemos observar en los resultados fotométricos, obtenemos en ambos casos (caso 1 y caso 2) los mismos resultados. Si en el caso 2 no le suplementáramos los 0.43 m del centro fotométrico, lo situaría más cerca del suelo, incrementaría los niveles de iluminancia y empeoraría la uniformidad, además de dar datos no correctos.

 

candelTEC les ofrece el servicio de ensayos fotométricos en luminarias viales, luminarias de exterior y luminarias de interior. Evaluación de seguridad fotobiológica en luminarias, lámparas y otros dispositivos luminosos. Les invitamos a ver nuestra web y redes sociales www.candeltec.es

Requisitos fotométricos, cromáticos y de seguridad óptica en productos LED

candelTEC estuvo el pasado mes de Octubre en Matelec 2016, compartiendo ponencia con Grupo Sering “Nuevos requisitos normativos de seguridad y fotometría para luminarias y equipos asociados. Explicación de nueva norma UNE-EN 13032-4”.

Tras ver brevemente la evolución de la normativa LED, nos centramos en las principales novedades de la norma UNE-EN 13032-4 con respecto a UNE-EN 13032-1:

  • Introduce los posibles cambios que se producen en la emisión luminosa y en el consumo con el cambio de posición de la luminaria. Permite utilizar cualquier tipo de goniofotómetro, siempre y cuando las medidas sean corregidas en función de la emisión y consumo del producto en su posición de trabajo.
  • Define claramente, condiciones para la medida, intervalos de tolerancia y aceptación.
  • Establece que el dato de eficacia debe ser calculado teniendo en cuenta el consumo de la fuente de luz y de sus equipos de alimentación.
  • Establece el valor de rendimiento o eficiencia en un 100%, cuando los productos no llevan lámparas o módulos intercambiables por los usuarios.
  • Los datos de distribución de intensidad luminosa para productos cuyo rendimiento sea del 100%, deben proporcionarse en fotometría absoluta (cd), aunque en los ficheros de intercambio de datos fotométricos mantengamos los datos en fotometría relativa (cd/klm).
  • Incluye la medida de datos de cromaticidad, aunque sigue refiriendo a las normas CIE habituales.
  • Incluye la evaluación de la uniformidad angular del color.
  • La temperatura de color debe ir acompañada de Duv, distancia señalada desde la curva de Planck dentro de una misma isolinea de Temperatura de color.

Finalmente, respecto a la norma UNE-EN 62471: NO ES UNA NORMA DE CUMPLIMIENTO. NO ESTABLECE UN PASA / NO PASA. Se trata de una norma de clasificación de las fuentes de luz, estableciendo el Grupo de riesgo del producto, determinado a partir de medidas radiométricas en una configuración determinada. Para luminarias de alumbrado general (GLS), se realizan las medidas a la distancia y en la dirección en que la luminaria proporciona 500 lx. (dirección de máxima emisión de la luminaria) y para otras fuentes de luz, la evaluación se realiza a una distancia de 200 mm.

La aplicación de la norma IEC 62471 para la evaluación del riesgo de la luz azul, ha generado en algunos casos, diferentes interpretaciones en la evaluación de los resultados de las pruebas.

  • La evaluación de la fuente a una distancia que produce 500 lx no siempre es significativa.
  • Evaluar todas las fuentes a una distancia de 200 mm conduciría a sobredimensionar el riesgo.
  • Es necesario definir parámetros con el fin de transferir datos desde el fabricante de la fuente de luz para el fabricante de luminarias.
  • Los productos clasificados dentro de grupo de riesgo 2 RG2 no se consideran peligrosos, incluso si se requieren advertencias para su uso con el fin de evitar la visión directa.

Para más información, descargue el PDF de la presentación aquí:

jornada-matelec-2016

candelTEC les ofrece el servicio de ensayos fotométricos en luminarias viales, luminarias de exterior y luminarias de interior. Evaluación de seguridad fotobiológica en luminarias, lámparas y otros dispositivos luminosos. Les invitamos a ver nuestra web y redes sociales www.candeltec.es

XLII Simposium Nacional de Alumbrado

Hace unas semanas, candelTEC asistió al XLII Simposium Nacional de Alumbrado en San Sebastián. La ponencia que presentó nuestra compañera Elena Sanjuán fue “SEGURIDAD FOTOBIOLÓGICA: IEC/TR 62778 ED. 2: APLICACIÓN DE LA NORMA IEC 62471, PARA LOS RIESGOS DERIVADOS DE LA LUZ AZUL”.

Se trata de un análisis del Informe Técnico IEC/TR 62778 ED. 2 “Application of IEC 62471 for the assessment of blue light hazard to light sources and luminaires”.

Para más información, descargue el PDF de la presentación aquí:

XLII Simposium Nacional de Alumbrado

candelTEC les ofrece el servicio de evaluación de seguridad fotobiológica en luminarias, lámparas y otros dispositivos luminosos. Les invitamos a ver nuestra web y redes sociales www.candeltec.es

Seguridad fotobiológica: norma IEC 62471

El próximo día 20 de mayo, candelTEC asistirá al XLII Simposium Nacional de Alumbrado en San Sebastián. La ponencia a presentar por nuestra compañera Elena Sanjuán, se centrará en el análisis del Informe Técnico IEC/TR 62778 ED. 2 “Application of IEC 62471 for the assessment of blue light hazard to light sources and luminaires”. Este informe, que proporciona aclaraciones sobre la evaluación de luz azul de todos los productos de iluminación que emiten en el rango visible (380 nm – 780 nm), parte de datos de fuentes de luz medidos según la norma IEC 62471: “Photobiological safety of lamps and lamp systems” y de la clasificación del producto según el grupo de riesgo definido en esta norma.

IEC 62471: describe todos los riesgos potenciales para la salud asociados a las radiaciones ópticas artificiales, desde el ultravioleta, visible e infrarrojo.

IEC/TR 62778: se ocupa exclusivamente del riesgo derivado de la luz azul en la retina, ya que es un efecto inducido principalmente por la porción azul del espectro visible, que tiene sus efectos potencialmente perjudiciales sobre la retina.

Según la norma EN 62471, tenemos dos condiciones diferentes para realizar las medidas y la evaluación del producto:

-Para luminarias de alumbrado general (GLS), se realizan las medidas a la distancia y en la dirección en que la luminaria proporciona 500 lx.

-Para otras fuentes de luz, la evaluación se realiza a una distancia de 200 mm.

El informe técnico IEC/TR 62778 nos plantea un método para poder determinar el grupo de riesgo del producto final (por ejemplo luminaria LED), y si es necesario estimar la distancia de seguridad.

Para evaluar la luminaria según el informe técnico IEC/TR 62778, es necesario disponer de los datos de la fuente de luz primaria (LED, chip LED, lámpara…): grupo de riesgo, temperatura de color, coordenadas cromáticas, datos espectrales… y disponer también de los siguientes datos de la luminaria: distribución fotométrica, medidas espectrales / temperatura de color…

El objetivo de este post es hacer una introducción a esta ponencia a realizar, explicando brevemente ciertos aspectos de la norma IEC 62471.

La norma IEC 62471:2009 es la herramienta más utilizada para la evaluación de la seguridad fotobiológica en lámparas y luminarias. Especifica los límites de exposición y el control de riesgos fotobiológicos de todas las fuentes incoherentes de banda ancha de radiación óptica, alimentadas eléctricamente. Incluyendo los LEDs y excluyendo los láseres.

Esta norma clasifica las luminarias en diferentes grupos de riesgo, especificando en cada caso un cierto límite de exposición del ojo o de la piel para el cual no se espera que produzca efectos biológicos adversos.

CLASIFICACIÓN

-GRUPO 0 (EXENTO)

-GRUPO 1 (BAJO RIESGO)

-GRUPO 2 (RIESGO MODERADO)

– GRUPO 3 (ALTO RIESGO)

Nos centraremos en las características de los dos primeros grupos:

tabla

Grupo 0. Grupo Exento: La lámpara no representa ningún riesgo fotobiológico para los puntos extremos de la norma. Este requisito lo cumple cualquier lámpara que no represente:

-Un riesgo actínico ultravioleta (Es) en 8 h de exposición (30000s)

-Un riesgo por ultravioleta cercano (EUVA) en 1000 s (alrededor de 16 min)

-Un riesgo retiniano por luz azul (LB) en 10000s (alrededor de 2,8h)

-Un riesgo térmico retiniano (LR) en 10s

-Un riesgo para el ojo por radiación infrarroja (EIR) en 1000s

Asimismo, están en el grupo exento las lámparas que emiten radiación infrarroja sin un estímulo visual fuerte (es decir, menos de 10 cd m-2) y no representan un riesgo retiniano por radiación infrarroja cercana (LIR) en 1000s.

Grupo 1. Bajo riesgo: La lámpara no representa un riesgo debido a las limitaciones normales de funcionamiento en la exposición. Este requisito lo cumple cualquier lámpara que exceda los límites del grupo exento pero que no represente:

-Un riesgo actínico ultravioleta (Es) en 10000 s

-Un riesgo por ultravioleta cercano (EUVA) en 300 s

-Un riesgo retiniano por luz azul (LB) en 100s

-Un riesgo para el ojo por radiación infrarroja (EIR) en 100s

Asimismo, están en el grupo 1 de riesgo las lámparas que emiten radiación infrarroja sin un fuerte estímulo visual (es decir, menos de 10 cd m-2) y no representan un riesgo retiniano por radiación infrarroja cercana (LIR) en 100s.

RIESGO RETINIANO POR LUZ AZUL: ASPECTOS A TENER EN CUENTA EN SU EVALUACIÓN

Espectro de emisión de la fuente de luz: Cuanta más radiación emita en las longitudes de onda comprendidas entre 400 – 500 nm, mayor será el riesgo en el azul.

Distancia de medida: es aquella a la que la fuente de luz produzca una iluminación de 500 lux. Cuanto más potente sea la fuente emisora, a mayor distancia se conseguirán los 500 lux, por lo que el valor de la intensidad emitida será mayor y con ello la luminancia.

L = I / A = E*d2 /A

Así, cuanto más pequeña sea el área emisora más grande será la luminancia. Si la fuente emisora emite mucha potencia por unidad de área, mayor riesgo.

La radiación visible puede causar daños en la retina a través de mecanismos fotoquímicos. Por tanto, para la evaluación del riesgo retiniano por luz azul, es necesaria la aplicación de la curva espectral B(lambda) a los datos tomados de radiancia en nuestra luminaria, siendo B(lambda) la función de riesgo fotoquímico por “luz azul” en la retina (300 – 700 nm).

1

candelTEC les ofrece el servicio de evaluación de seguridad fotobiológica en luminarias, lámparas y otros dispositivos luminosos. Les invitamos a ver nuestra web y redes sociales www.candeltec.es